Flow Past a Liquid Drop with a Large Non-uniform Radial Velocity
نویسندگان
چکیده
In this analysis, the translation of a liquid drop experiencing a strong non-uniform radial velocity has been investigated. The situation arises when a moving liquid drop experiences condensation, evaporation or material decomposition at the surface. By simultaneously treating the flow fields inside and outside the drop, we have obtained physical results relevant to the problem. The magnitude of the radial velocity is allowed to be very large, but the drop motion is restricted to slow translation. The solution to the problem has been developed by considering a uniform radial flow with the translatory motion introduced as a perturbation. The role played by the inertial terms due to the strong radial field has been clearly delineated. The study has revealed several interesting features. An inward normal velocity on a slowly moving drop increases the drag. An increasing outward normal velocity decreases the drag up to a minimum beyond which it increases. The total drag force not only consists of contributions from the viscous and the form drags but also from the momentum transport at the interface. Since the liquid drop admits a non-zero tangential velocity, the tangential momentum convected by the radial velocity forms a part of this drag force. The circulation inside the drop decreases (increases) with an outward (inward) normal velocity. A sufficiently large non-uniform outward velocity causes the circulation to reverse. In the limit of the internal viscosity becoming infinite, our analysis collapses to the simple case of a translating rigid sphere experiencing a large non-uniform radial velocity. By letting the radial velocity become vanishingly small the Stokes-flow solution is recovered. An important contribution of the present study is the identification of a new singularity in the flow description. It accounts for both the inertial and the viscous forces and displays Stokeslet-like characteristics at infinity. Disciplines Engineering | Mechanical Engineering Comments Suggested Citation: Sadhal, Satwindar S. and Portonovo S. Ayyaswamy. (1983). Flow past a liquid drop with a large non-uniform radial velocity.. Journal of Fluid Mechanics. Vol. 133, p. 65-81. Copyright 1983 Cambridge University Press. This journal article is available at ScholarlyCommons: http://repository.upenn.edu/meam_papers/187 J . Fluid Meek (1983), vol. 133, p p . 65-81 Printed in Great Britain 65 Flow past a liquid drop with a large non-uniform radial velocity By S. S. SADHAL Department of Mechanical Engineering, University of Southern California, Los Angeles, CA 90089-1453 AND P. s. AYYASWAMY Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104 (Received 1 October 1982 and in revised form 1 February 1983) In this analysis, the translation of a liquid drop experiencing a strong non-uniform radial velocity has been investigated. The situation arises when a moving liquid drop experiences condensation, evaporation or material decomposition at the surface. By simultaneously treating the flow fields inside and outside the drop, we have obtained physical results relevant to the problem. The magnitude of the radial velocity is allowed to be very large, but the drop motion is restricted to slow translation. The solution to the problem has been developed by considering a uniform radial flow with the translatory motion introduced as a perturbation. The role played by the inertial terms due to the strong radial field has been clearly delineated. The study has revealed several interesting features. An inward normal velocity on a slowly moving drop increases the drag. An increasing outward normal velocity decreases the drag up to a minimum beyond which it increases. The total drag force not only consists of contributions from the viscous and the form drags but also from the momentum transport at the interface. Since the liquid drop admits a non-zero tangential velocity, the tangential momentum convected by the radial velocity forms a part of this drag force. The circulation inside the drop decreases (increases) with an outward (inward) normal velocity. A sufficiently large non-uniform outward velocity causes the circulation to reverse. In the limit of the internal viscosity becoming infinite, our analysis collapses to the simple case of a translating rigid sphere experiencing a large non-uniform radial velocity. By letting the radial velocity become vanishingly small the Stokes-flow solution is recovered. An important contribution of the present study is the identification of a new singularity in the flow description. It accounts for both the inertial and the viscous forces and displays Stokeslet-like characteristics at infinity.
منابع مشابه
Non-Equilibruim Molecular Dynamics Simulation of Poiseuille Flow in a Nanochannel
The numerical simulation of a Poiseuille flow in a narrow channel using the molecular dynamics simulation (MDS) is performed. Poiseuille flow of liquid Argon in a nanochannel is simulated by embedding the fluid particles in a uniform force field. Density, velocity and Temperature profiles across the channel are investigated. When particles will be inserted into the flow, it is expected that the...
متن کاملEffect of Nondimensional Parameters On the Internal Circulation of a Liquid Drop Moving with the Surrounding Gas
The internal flow circulation dynamics of a liquid drop moving in a co- or counter-flowing gas stream has been numerically studied. The present work is concerned with the time accurate numerical solution of the two phase flow field at the low Mach number limit with an appropriate volume tracking method to capture motion and deformation of a liquid drop. It is shown that relative velocity betwee...
متن کاملEffect of Nondimensional Parameters On the Internal Circulation of a Liquid Drop Moving with the Surrounding Gas
The internal flow circulation dynamics of a liquid drop moving in a co- or counter-flowing gas stream has been numerically studied. The present work is concerned with the time accurate numerical solution of the two phase flow field at the low Mach number limit with an appropriate volume tracking method to capture motion and deformation of a liquid drop. It is shown that relative velocity betwee...
متن کاملModeling heat and mass transfer in laminar forced flow between parallel plates channel imposed to suction or injection
A numerical model is developed to simulate the transport phenomena in the flow channel between parallel plates with porous and non-porous (or impermeable) walls. The continuity and momentum equations were solved first, assuming the wall Reynolds number in the range of with the suction or injection of air at a speed equal to the uniform inlet velocity. The results show that at constant inlet and...
متن کاملThe Influence of the Pipe’s Material and the Mass Flow Rate on the Pressure Drop and Velocity Variation During Pneumatic Conveying of Wheat Using Computational Fluid Dynamics
According to flexibility of pneumatic conveying systems with respect to other types of transmission systems, this system has wide application in industry and agriculture processes. One important application of this system is in the loading and unloading tankers and powdery bulk materials such as trucks carrying cement, plaster and sand. Conveying efficiency is associated with pressure, which in...
متن کامل